3.3.35 \(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {1+\cos (c+d x)}} \, dx\) [235]

3.3.35.1 Optimal result
3.3.35.2 Mathematica [C] (warning: unable to verify)
3.3.35.3 Rubi [A] (verified)
3.3.35.4 Maple [B] (verified)
3.3.35.5 Fricas [B] (verification not implemented)
3.3.35.6 Sympy [F]
3.3.35.7 Maxima [C] (verification not implemented)
3.3.35.8 Giac [F]
3.3.35.9 Mupad [F(-1)]

3.3.35.1 Optimal result

Integrand size = 23, antiderivative size = 62 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {1+\cos (c+d x)}} \, dx=-\frac {\sqrt {2} \arcsin \left (\frac {\sin (c+d x)}{1+\cos (c+d x)}\right )}{d}+\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {1+\cos (c+d x)}} \]

output
-arcsin(sin(d*x+c)/(1+cos(d*x+c)))*2^(1/2)/d+2*sin(d*x+c)/d/cos(d*x+c)^(1/ 
2)/(1+cos(d*x+c))^(1/2)
 
3.3.35.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 1.27 (sec) , antiderivative size = 178, normalized size of antiderivative = 2.87 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {1+\cos (c+d x)}} \, dx=\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {1}{2} (c+d x)\right ) \left (\frac {1}{2} \cos (c+d x) (2+\cos (c+d x)) \csc ^4\left (\frac {1}{2} (c+d x)\right ) \left (1-\cos (c+d x)+\text {arctanh}\left (\sqrt {-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cos (c+d x) \sqrt {2-2 \sec (c+d x)}\right )-\frac {1}{10} \operatorname {Hypergeometric2F1}\left (2,\frac {5}{2},\frac {7}{2},-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x) \tan (c+d x)\right )}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {1+\cos (c+d x)}} \]

input
Integrate[1/(Cos[c + d*x]^(3/2)*Sqrt[1 + Cos[c + d*x]]),x]
 
output
(2*Cos[(c + d*x)/2]*Sin[(c + d*x)/2]*((Cos[c + d*x]*(2 + Cos[c + d*x])*Csc 
[(c + d*x)/2]^4*(1 - Cos[c + d*x] + ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d 
*x)/2]^2)]]*Cos[c + d*x]*Sqrt[2 - 2*Sec[c + d*x]]))/2 - (Hypergeometric2F1 
[2, 5/2, 7/2, -(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]*Sin[c + d*x]*Tan[c + d*x 
])/10))/(d*Cos[c + d*x]^(3/2)*Sqrt[1 + Cos[c + d*x]])
 
3.3.35.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 3258, 3042, 3260, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x)+1}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}dx\)

\(\Big \downarrow \) 3258

\(\displaystyle \frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x)+1}}-\int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x)+1}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x)+1}}-\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}dx\)

\(\Big \downarrow \) 3260

\(\displaystyle \frac {\sqrt {2} \int \frac {1}{\sqrt {1-\frac {\sin ^2(c+d x)}{(\cos (c+d x)+1)^2}}}d\left (-\frac {\sin (c+d x)}{\cos (c+d x)+1}\right )}{d}+\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x)+1}}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x)+1}}-\frac {\sqrt {2} \arcsin \left (\frac {\sin (c+d x)}{\cos (c+d x)+1}\right )}{d}\)

input
Int[1/(Cos[c + d*x]^(3/2)*Sqrt[1 + Cos[c + d*x]]),x]
 
output
-((Sqrt[2]*ArcSin[Sin[c + d*x]/(1 + Cos[c + d*x])])/d) + (2*Sin[c + d*x])/ 
(d*Sqrt[Cos[c + d*x]]*Sqrt[1 + Cos[c + d*x]])
 

3.3.35.3.1 Defintions of rubi rules used

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3258
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_. 
) + (f_.)*(x_)]], x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x]) 
^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Simp[1/(2* 
b*(n + 1)*(c^2 - d^2))   Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c 
*(n + 1) + b*d*(2*n + 3)*Sin[e + f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] 
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] 
&& NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
 

rule 3260
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-Sqrt[2]/(Sqrt[a]*f)   Subst[Int[1/Sqrt[1 - 
x^2], x], x, b*(Cos[e + f*x]/(a + b*Sin[e + f*x]))], x] /; FreeQ[{a, b, d, 
e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d, a/b] && GtQ[a, 0]
 
3.3.35.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(131\) vs. \(2(56)=112\).

Time = 4.94 (sec) , antiderivative size = 132, normalized size of antiderivative = 2.13

method result size
default \(\frac {\left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+2 \sin \left (d x +c \right )\right ) \sqrt {2+2 \cos \left (d x +c \right )}\, \sqrt {2}}{2 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right )}}\) \(132\)

input
int(1/cos(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2/d*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*2^(1/2)*arcsin(cot(d*x 
+c)-csc(d*x+c))+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*arcsin(cot(d*x+c 
)-csc(d*x+c))+2*sin(d*x+c))*(2+2*cos(d*x+c))^(1/2)/(1+cos(d*x+c))/cos(d*x+ 
c)^(1/2)*2^(1/2)
 
3.3.35.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 121 vs. \(2 (56) = 112\).

Time = 0.28 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.95 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {1+\cos (c+d x)}} \, dx=-\frac {{\left (\sqrt {2} \cos \left (d x + c\right )^{2} + \sqrt {2} \cos \left (d x + c\right )\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )}}\right ) - 2 \, \sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )} \]

input
integrate(1/cos(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
-((sqrt(2)*cos(d*x + c)^2 + sqrt(2)*cos(d*x + c))*arctan(1/2*sqrt(2)*sqrt( 
cos(d*x + c) + 1)*sqrt(cos(d*x + c))*sin(d*x + c)/(cos(d*x + c)^2 + cos(d* 
x + c))) - 2*sqrt(cos(d*x + c) + 1)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*co 
s(d*x + c)^2 + d*cos(d*x + c))
 
3.3.35.6 Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {1+\cos (c+d x)}} \, dx=\int \frac {1}{\sqrt {\cos {\left (c + d x \right )} + 1} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate(1/cos(d*x+c)**(3/2)/(1+cos(d*x+c))**(1/2),x)
 
output
Integral(1/(sqrt(cos(c + d*x) + 1)*cos(c + d*x)**(3/2)), x)
 
3.3.35.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.58 (sec) , antiderivative size = 648, normalized size of antiderivative = 10.45 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {1+\cos (c+d x)}} \, dx=\frac {2 \, \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) \sin \left (d x + c\right ) - 2 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - \sqrt {2} {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \arctan \left (\frac {{\left ({\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{4} + \cos \left (d x + c\right )^{4} + \sin \left (d x + c\right )^{4} + 2 \, {\left (\cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} {\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2} - 4 \, \cos \left (d x + c\right )^{3} + 2 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )^{2} + 6 \, \cos \left (d x + c\right )^{2} - 4 \, \cos \left (d x + c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\frac {2 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2}}, \frac {{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2} + \cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1}{{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2}}\right )\right ) + \sin \left (d x + c\right )}{{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}}, \frac {{\left ({\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{4} + \cos \left (d x + c\right )^{4} + \sin \left (d x + c\right )^{4} + 2 \, {\left (\cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} {\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2} - 4 \, \cos \left (d x + c\right )^{3} + 2 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )^{2} + 6 \, \cos \left (d x + c\right )^{2} - 4 \, \cos \left (d x + c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\frac {2 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2}}, \frac {{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2} + \cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1}{{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2}}\right )\right ) + \cos \left (d x + c\right ) - 1}{{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}}\right )}{{\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} d} \]

input
integrate(1/cos(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
(2*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - 
 2*(cos(d*x + c) - 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 
 1)) - sqrt(2)*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2* 
c) + 1)^(1/4)*arctan2(((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin( 
d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs( 
e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x 
+ c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*si 
n(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2 
, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d* 
x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sin(d*x + c))/abs(e^(I*d*x + I* 
c) + 1), ((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 
2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I* 
c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin 
(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*cos(1/2*arctan2 
(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d 
*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/a 
bs(e^(I*d*x + I*c) + 1)^2)) + cos(d*x + c) - 1)/abs(e^(I*d*x + I*c) + 1))) 
/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4) 
*d)
 
3.3.35.8 Giac [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {1+\cos (c+d x)}} \, dx=\int { \frac {1}{\sqrt {\cos \left (d x + c\right ) + 1} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/cos(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(cos(d*x + c) + 1)*cos(d*x + c)^(3/2)), x)
 
3.3.35.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {1+\cos (c+d x)}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {\cos \left (c+d\,x\right )+1}} \,d x \]

input
int(1/(cos(c + d*x)^(3/2)*(cos(c + d*x) + 1)^(1/2)),x)
 
output
int(1/(cos(c + d*x)^(3/2)*(cos(c + d*x) + 1)^(1/2)), x)